Peppol Document Format(s)

2025-02-20

Jelte Jansen, Ionite B.V.

I g € e To [U Tt [0} o PN OSSR PRUPR 2
2 A (brief) history of structured business document types......ccccveveereveereveerenneens 3
2.1 UBLutttirieeerereeeteeeseseeetsseeseseesssseessessesssssseessesssssssssesssssssssssssssssssseessssssssseneens 4
2.2 The problem With UBL.......ccooiirireiierienieneenetneteeteseesee st eeeeseessessnsenens 5
2.3 European NOrm EN-TB93o ciiieirreircnererrcnneeenesneeesesenessssenessessnessosnessssssnnnes 7
2.4 Semantic models and SyNntax MapPPiNgS.....ccecceecererrerreerreerseereneeseeessessenesenseens 8
2.5 Customization Of EN-T693T..c..cccirrtreerrircennercesseesnnseesesseessessessnseseessesssesssnees 11
2.6 PEPPOccuiiiereirireteeteree st srteetesre e s st se st s st e s eesea s na et e s nnnesenanesennaesenneens 12
3 Peppol BIS Invoices - how to read the specification.......cccecervercerreecrerseecreennees 15
3.1 DOCUMENTAtION OVEIVIEW.....uiireeereererinrereeereereesaresesreseneesessnesssnesensesessasesanessns 15
3.2 Peppol BIS Main SpecifiCation......c.eceriecernicenniecenieceneeceneeceneecneseeseens 17
3.3 Peppol BIS BilliNg SYNtAX....cccrererererererrenreenseesseessrteeseesseesseessesssnensssnesessnssssseeess 17
3.4 Peppol BIS validation ruUlesS........eeeeinieneenercteeeeneeneenntseeeseeseeseneensennns 20
3.5 PepPOIl BIS COUR lIStS.irnriierirrrrenrrenreersrrecreesreesseesseessseesessseessessonssesssssesssssssseness 23
4 Peppol BIS EXaMPIe INVOICE.....cccviereerreereeririreteeeenseesseessseseseesseesseessssssssssnsessnsnesans 25
5 Validating INVOICES...cccuervuerreecreinrtenreesseensreesreesseesseesssesssessssssssessssesssessssssssssnssesssessas 27
5.7 XML SCN@MIA..eiiiieeecentcertee ettt ee st e s s e e e e s e s e e s men e 27
5.2 SCREMALION....eiiiieeetrcertreestrste st reesstesee st s see st ssne st s se st esseseeseneesnsessensonsanes 28
5.3 Steps to validate a Peppol BIS document........ccocvceevereernirceersercennenceenenennns 29
5.4 Steps to validate other dOCUMENTS....cciiviicveerveenreenrerceesrresreeesseeesseeesseeesas 30
5.5 ONliNE VAlIdAtOrS...ccciriieereeeereeetreeerereesstseessessees st see st ssee st essessesssssseessnsanees 30
5.6 Validation [Draries.. ... ecirreeririeeeerreeetereeseeseessteseesseeseesseessessssssssseessessseesaenas 30
6 How to get started on an implementation....c..ccueeceerveenreenreennenireeessreeessreesssnees 31
7 RETEIENCES. ..ttt esre st ssee st e sse st s sse st sssssesssessnsssessssssassssssessnsssnssnees 33

1 Introduction

This document aims to provide an introduction to the Peppol BIS Invoice
document specification, by discussing a brief overview of the history of business
document standards as it pertains to Peppol BIS, a reading guide for the
specification documents, and some suggestions on how to get started when
adding Peppol BIS support to an existing (invoice) software system.

While the focus is on Peppol BIS (UBL) Invoices, a lot of the underlying
principles also go for other Peppol BIS documents, and potentially non-peppol
business documents as well. We will occasionally mention some other
document types, but the main goal is providing information about Peppol BIS
UBL invoices, as these are the main documents used on the Peppol network.

This document will not discuss other technical topics regarding the peppol
network, such as transport protocols and business level processes.

2 A (brief) history of structured business
document types

When data is exchanged between two parties, they need to agree upon the
format and the meaning of that data. For a bilateral exchange, this agreement
could be made in an ad-hoc manner; the parties have a few meetings, agree on
some data structure, and both implement that data structure into their
systems.

In a bilateral exchange between two parties, this could be done in an ad-hoc
manner: the parties have a few meetings, decide on a data format, and
implement it in their respective systems. This process, however, does not scale:
if there are multiple parties communicating with each other, each with their own
formats, the number of formats in use rises exponentially, and in many cases,
which increases the amount of work that needs to be done, as well as the
number of mistakes that are made in implementation and operation.

This is where standards are useful: in a bilateral exchange agreement, two
parties can decide on which standards to use, thereby reducing the amount of
work they need to do to implement the exchange. A community of parties can
also agree to use the same standards, which would reduce that amount of work
for everyone involved, including future community members.

For instance, they can decide that all data exchange is done using XML, so that
they can use standard software for building and parsing the data structure.
Taking this one step further, they could also agree that the XML should have a
fixed structure, with restrictions on the elements that may occur and what the
values of those elements may be. If that is standardized, the parties know
exactly which features they need to implement in order to exchange data with
other parties that are using the same standard.

In the world of business document exchange, there have always been a lot of
bilateral agreements, and small communities creating unique data formats for
their data exchange needs. But often, the same type of information is
exchanged; think of catalogues, orders, and invoices, to name a few. The
realization that this led to a lot of duplicate effort gave rise to the creation of
several efforts to define a standard format for business documents. Two of the
more widely known are:

Universal Business Language (UBL) from Oasis [UBL]

https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=556949c8-dac8-40e6-bb16-018dc7ce54d6

The Cross Industry formats from UN/CEFACT, such as the Cross Industy
Invoice (CII) [CII]

We'll focus on UBL, but will occasionally mention UN/CEFACT and other
standards.

2.1 UBL

The Universal Business Language [UBL] defines a number of XML schemas for
business documents. In the first version of UBL, these were Order, Billing, and
Filfulment documents only, but many more schemas were added in later
versions.

XML Schemas

An XML Schema is a structural specification for XML documents: it
defines which XML tags may occur, in which order, their cardinality
(e.g. how often they must or may appear), which XML attributes the
tags may have, and basic type information on their values (humbers,
text, date, time, etc.).

Many XML processing libraries and tools provide functionality to
validate a given XML document against a specific schema. Section 5
contains more information on document validation.

The UBL specification provides a number of basic XML types (‘common basic
components’), aggregates those into complex types (‘common aggregated
components’), and finally defines business documents that contain a number of
these basic and aggregated components.

You'll recognize this structure when you see the XML of UBL documents, as it is
a convention (though not a rule!) to use XML namespace prefixes coc: for basic
components, and cac: for aggregated components.

The latest version of UBL is 2.4. However, we shall refer to UBL 2.1 [UBL2.1], as
that is the version that most Peppol BIS documents are currently based on. For
us, for now, the most important one is the UBL Invoice [UBL-2.1-INVOICE]

If you want to see a full overview of all elements of the UBL 2.1 invoice, there is
a helpful online view at [DATYPIC-UBL2.1-INVOICE].

http://www.datypic.com/sc/ubl21/e-ns39_Invoice.html
https://docs.oasis-open.org/ubl/UBL-2.1.html#T-INVOICE
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=556949c8-dac8-40e6-bb16-018dc7ce54d6
https://unece.org/trade/uncefact/e-invoice

The UBL invoice should contain just about everything you might need to
commonly exchange invoice information. And even in the case it's not, it has a
field ‘'UBLExtensions’, where you can add your own additional data structure.

Sample of a very basic UBL invoice:

<Invoice>
<cbc:ID>123</cbc:ID>
<cbc:IssueDate>2011-09-22</cbc:IssueDate>
<cac:InvoicePeriod>
<cbc:StartDate>2011-08-01</cbc:StartDate>
<cbc:EndDate>2011-08-31</cbc:EndDate>
</cac:InvoicePeriod>
<cac:AccountingSupplierParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>Custom Cotter Pins</cbc:Name>
</cac:PartyName>
</cac:Party>
</cac:AccountingSupplierParty>
<cac:AccountingCustomerParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>North American Veeblefetzer</cbc:Name>
</cac:PartyName>
</cac:Party>
</cac:AccountingCustomerParty>
<cac:LegalMonetaryTotal>
<cbc:PayableAmount currencyID="CAD">100.00</cbc:PayableAmount>
</cac:LegalMonetaryTotal>
<cac:Invoiceline>
<cbc:ID>1</cbc: ID>
<cbc:LineExtensionAmount
currencyID="CAD">100.00</cbc:LineExtensionAmount>
<cac:Item>
<cbc:Description>Cotter pin, MIL-SPEC</cbc:Description>
</cac:Item>
</cac:InvoiceLine>
</Invoice>

2.2 The problem with UBL

The problem with UBL (and CII) is that it is too broad; since they aim to cover
most, if not all, business use-cases, they allow for many optional elements and
data constructs that most businesses will never need.

That makes it easy to put whatever data you have into a valid UBL document,
since you can choose the xml elements you want to use for that data. There is
no need to use any of the other fields, so your implementation can be limited to
those fields you have chosen.

However, if you're the one receiving arbitrary UBL documents, you should be
able to process all possible elements, as you don't know which fields the sender
uses, and what their values or constraints may be.

What happened next was that users of UBL would realize they really only used a
small subset of UBL, say 100 to 200 possible elements. They'd agree amongst
each other that certain fields were not to be used, others would be mandatory,
and for some the values would be restricted to a limited set of options.

UBL Customizations

UBL provides support for defining subsets of its elements, or other
restrictions to valid documents. This is called a customization, and
indicated through the UBL Element cbc:customizationin, Which
contains an identifier indication which customization is in use.

Essentially, this is the element that shows which rules and restrictions
the document is supposed to be compliant to, and each document type
has a unique CustomizationID. A document can only have one
CustomizationID.

This happened in many places, some because the creators were not aware of
others, others because the creators did not agree on the choices of other
dialects, and yet more simply because of the Not-Invented-Here effect. Just to
name a few, there were UBL-OHNL, Peppol BIS (1/2), SI-UBL, XRechnung,
OIOUBL, and many, many more.

UBL Invoice

Peppol BIS Invoice

N

Venn Diagram of some of the customizations

While the ‘general’ structure of these formats was the same, there were many,
many different customizations of these in use (and there still are!), and software
that supports one is not guaranteed to work with the others; they may use
elements that another format has excluded, or leave out elements that another
format has made mandatory.

2.3 European Norm EN-16931

At some point, there was a directed effort to improve this, at least for invoices at
EU government organizations. This effort covered not just UBL-based invoice
formats, but other formats as well: European Norm EN-16931 [EN-16931].

EN-16931 describes a semantic data model for “Core Invoices”; e.g. it defines a
set of business terms for an invoice, and a set of business rules that compliant
documents must adhere to. It also defines mappings for that semantic model to
UBL and CII (and EDIFACT, but EDIFACT is very different from the others).

EN-16931 came with EU Directive 2014/55, which dictates that member states
adopt it so that it will become mandatory for all public contracting authorities
and contracting entities to receive and process elnvoices complying with EN-
16931.

EN-16931 comprises several documents:

Part Identifier Name

1 EN 16931-1:2017 Semantic data model of the core elements of
an electronic invoice

2 CEN/TS 16931-2:2017 List of syntaxes that comply with EN 16931

3-1 CEN/TS 16931-3-1:2017 Methodology for syntax bindings of the core
elements of an electronic invoice

3-2 CEN/TS 16931-3-2:2017 Syntax binding for ISO/IEC 19845 (UBL 2.1)
invoice and credit note

3-3 CEN/TS 16931-3-3:2017 Syntax binding for UN/CEFACT XML Industry
Invoice D16B

3-4 CEN/TS 16931-3-4:2017 Syntax binding for UN/EDIFACT Invoice D16B

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Obtaining+a+copy+of+the+European+standard+on+eInvoicing

2.4 Semantic models and syntax mappings

Many business document specifications make a distinction between the
semantic model (what data there is) and the syntax (how that data is written
down), and specify these in separate documents. This choice is usually made
because the model can be mapped to multiple syntaxes. For instance, EN-16931
and Peppol BIS both provide mappings to UBL as well as UN/CEFACT CII, as do a
number of other document types, such as XRechnung. Note that while Peppol
BIS does provide a mapping to UN/CEFACT CII, the UBL syntax is the default and
mandatory one. EN-16931 does not choose any particular syntax over the other.

Keep in mind that this is not always the case; some specifications have only a
single syntax, and the semantic model and syntax mapping are a single
specification.

Usually, when speaking about a specific document type or format, we mean
both the semantic model and the mapping together.

2.4.1 Semantic models

A semantic model describes what data can be modeled, what that data
represents within its context, what the limitations on the data sets are, and up
to a point, how the data is to be treated or processed.

A Semantic model contains The following:

1. Alist of data elements (“Business Terms") and data groups (“Business
Groups”)

2. What those data elements and groups mean (hence semantic model)

How often they must/may occur (their cardinality)

4. Additional rules and restrictions (e.g. the total of an invoice must equals
the sum of the invoice lines) (“Business Rules”)

5. How the data should, on a high level, be processed, and how it may relate
to business processes

w

o 44 o

1 Scope 8
2 Normative references 8
3 Terms and definitions 9

~ 4 The concept of a core invo... 10

4.1 The core invoice mod... 10
4.2 Contents of the core .. 11
43 Howto useand exten... 12

v 4.4 Compliance 13

44.1 General 13

4.4.2 Compliance of the... 13
4.4.3 Compliance of sen... 14

4.4.4 Compliance of ani... 14
~ 5 Business processes andf... 14
5.1 The business parties i... 14

~ 5.2 Business processreq... 15
5.2.1 Introduction 15

5.2.2 Invoicing of delive... 17
5.2.3 Periodic invoicing .. 18
5.2.4 Invoicing the deliv... 18
525 Prepayment (P4) 19
5.2.6 Spot payment (P5) 20
527 Paymentin advan... 21
5.2.8 Invoices with refer... 21
5.2.9 Invoices with refer... 22
52.10 CreditNoteorn... 22
5.2.11 Corrective invoici... 23
5.2.12 Partial and final i.. 24
5213 Selfbillng (P12) 24

~ 5.3 Invoicing functionality... 25

5.3.1 Introduction 25
53.2 Accounting 2
5.3.3 Invoice verification 26
5.3.4 VAT reporting 29
53.5 Auditing 30
5.3.6 Payment 31
53.7 Inventory 32

538 Delivery process 32
5.3.9 Customs clearance 32

5.3.10 Marketing 32
53.11 Reporting 33
5.4The coreinvoicemod... 33

~ 6 The semantic data model ... 34
6.1 Introduction 34

6.2 Legend 36

~ 6.4 Business rules 70

6.4.1 Integrity constrai... 70

E] = 2 *

Sample of EN-16931 Business Terms

o 7 o
1 scope

2 Normative references 8
3 Terms and definitions 9

~ 4 The concept of a core invo... 10

4.1 The core invoice mod... 10
4.2 Contents of the core .. 11
43 Howto use and exten... 12

v 4.4 Compliance 13

44.1 General 13

4.4.2 Compliance of the... 13/
4.4.3 Compliance of sen... 14

4.4.4 Compliance of ani... 14
~ 5 Business processes andf... 14
5.1 The business parties i... 14
5.2 Business processreq... 15
5.2.1 Introduction 15

5.2.2 Invoicing of delive... 17
5.2.3 Periodic invoicing .. 18
5.2.4 Invoicing the deliv... 18
525 Prepayment (P4) 19
5.2.6 Spot payment (P5) 20
527 Paymentin advan... 21
5.2.8 Invoices with refer... 21
5.2.9 Invoices with refer... 22
52.10 CreditNoteorn... 22
5.2.11 Corrective invoici... 23
5.2.12 Partial and final i.. 24
5213 Selfbillng (P12) 24

~ 5.3 Invoicing functionality... 25

5.3.1 Introduction 25
53.2 Accounting 2
5.3.3 Invoice verification 26
5.3.4 VAT reporting 29
53.5 Auditing 30
5.3.6 Payment 31
53.7 Inventory 32

538 Delivery process 32
5.3.9 Customs clearance 32

5.3.10 Marketing 32
53.11 Reporting 33
5.4The coreinvoicemod... 33

~ 6 The semantic data model ... 34
6.1 Introduction 34

6.2 Legend 36

6.3 The semantic model 38
6.4 Business rules 70)

6.4.1 Integrity constrai... 70

E] = 2 *

EN16931-1.pdf 100% ~ Q4 =
EN 16931-1:2017 (E)
. . oo Req. Semantic
ID Level Cardinality Business Term Description Usage Note D At
This information may affect how the Buyer
The local identification (defined by | settles the payment (such as for social
Seller tax the Seller’s address) of the Seller for | security fees). E.g. in some countries, if the
BT-32 | ++ 0.1 registration tax purposes or a reference that Seller is not registered as a tax paying R47 Identifier
identifier enables the Seller to state his entity then the Buyer is required to
registered tax status. withhold the amount of the tax and pay it
on behalf of the Seller.
BT-33 |44 0.1 Seller. addltlon}i] Additional legal information Such as share capital. R47 Text
legal information | relevant for the Seller.
Identifies the Seller's electronic
Seller electronic address to which the application R13, ”
BESS |+ 01 address level response to the invoice may be R57 Identifier
delivered.
5 zes The identification scheme identifier Th.e sciene id.ent%ﬁer shallbe chosen.from
1.4 Scheme identifier . alist to be maintained by the Connecting
of the Seller electronic address. -
Europe Facility.
A group of business terms providing .
BG-5 ++ il SRS information about the address of the Stfandtant components e addrgss areto | pe3
ADDRESS Seller. be filled to comply with legal requirements.
BT-35 | 444 0.1 Seller address line hemdlhaidress linetnanadiess Usually the street name and number or post RS3 Text
office box.
An additional address line in an
Seller address line | address that can be used to give
BE:36! fart 0.4 2 further details supplementing the R53 et
main line.
An additional address line in an
BT-162 | +4+ 0.1 Seller address line | address that. can be used to give RS3 Text
further details supplementing the
main line.

6.4 Business rules

6.4.1 Integrity constraints

EN16931-1.pdf

Table 3 — Business rules - Integrity constraints

Busines
ID Description Target / context |s term /
group
BR-1 An Invoice shall have a Specification identifier (BT-24). Process control |BT-24
BR-2 An Invoice shall have an Invoice number (BT-1). Invoice BT-1
BR-3 An Invoice shall have an Invoice issue date (BT-2). Invoice BT-2
BR-4 An Invoice shall have an Invoice type code (BT-3). Invoice BT-3
BR-5 An Invoice shall have an Invoice currency code (BT-5). Invoice BT-5
BR-6 An Invoice shall contain the Seller name (BT-27). Seller BT-27
BR-7 An Invoice shall contain the Buyer name (BT-44). Buyer BT-44
BR-8 An Invoice shall contain the Seller postal address (BG-5). Seller BG-5
BR-9 The Seller postal address (BG-5) shall contain a Seller|Seller Postal BT-40
country code (BT-40). Address
BR-10 | An Invoice shall contain the Buyer postal address (BG-8). Buyer BG-8
~ The Buyer postal address shall contain a Buyer country | Buyer Postal 7
BR1 1) de (BT-55). Address oL
BR-12 An Invoice shall have the Sum of Invoice line net amount Document totals | BT-106
(BT-106).
BR-13 An Invoice shall have the Invoice total amount without VAT Document totals | BT-109
(BT-109).
BR-14 An Invoice shall have the Invoice total amount with VAT Document totals | BT-112
(BT-112).
BR-15 ??:invmce shall have the Amount due for payment (BT- Document totals | BT-115

Sample of EN-16931 Business Rules

2.4.2 Cardinality

Both semantic models and syntax mappings define a cardinality for each of the
elements. The cardinality defines how many times any given data element may
occur. It is often expressed using the following notation:

<Minimum number>..<Maximum number, or n if there is no limit>

For example:

0..1: Optional element, may occur only once

1..1: Mandatory element, may occur only once
0..n: Optional element, may occur multiple times
1..n: Mandatory element, may occur multiple times
1..2: Mandatory element, may occur once or twice
etc.

Note that the cardinality specifies how many times that element may occur
within its parent element. For instance, the cardinality of a the invoice line
amount is 1..1, meaning that there must be exactly one line amount per invoice
line, not that there must be exactly one line amount in the entire document.

2.4.3 Syntax mappings

A Syntax Mapping (often just called mapping or syntax) maps the business
terms and groups to a specific format, e.g. XML, or more specifically, UBL, CII, or
EDIFACT. This usually adds a fixed order of the elements as well.

10

CENTIS 16931 2 2:2020%n 0% -

CEN/TS 16931-3-2:2020 (E)

= 7 ; o i
D £ % |er Desc. & | path B T Match | Rules
= < =T (RS
legal entities or as a
Taxable person or
otherwise trades as a
person or persons.
BT-28| 2 |0.1|Sellertrading|A name by which the| T |/Invoice/cac:AccountingSupplierParty/cac: N 0.n [CAR-3
name Seller is known, other Party/cac:PartyName/cbc:Name
than Seller name (also
known as Business
name).
BT-29| 2 |0.n|Seller An identification of| 1 |/Invoice/cac:AccountingSupplierParty/cac: 1 0.n [CAR-3
A22150421... 138 identifier the Seller. Party/cac:Partyldentification/cbc:ID
A231SO/IEC... 139
A24UNTDL. 140 BT- 3 [0.1|Seller The identification | S | /Invoice/cac:AccountingSupplierParty/cac: 1 0.1
A25UNTDL. 147 29-1 ?dent?ﬁer‘ scheme i.dentif‘ler of Party/cac:Partyldentification/cbc:ID /@sche
AT THE ST identification | the Seller identifier. melD
scheme
A27 VAT Cat... 142 g o
identifier
A28UNTDL.. 143
A29UNTDL.. 143 BT-30(2 |[0.1|Seller legal|Anidentifierissuedby| I |/Invoice/cac:AccountingSupplierParty/cac: 1 0.n | CAR-3
A2.10 UNTDL.. 144 registration |an official registrar Party/cac:PartyLegalEntity/cbc:CompanyID
A2.11 UNTDL... 144 identifier that identifies the
A2.12 UNTDL.. 145 Seller as a legal entity
A2.13 UNTDL.. 146 Or person.
A2.14 UNTDL... 146 BT- 3 |0.1|Seller legal |The identification | S | /Invoice/cac:AccountingSupplierParty/cac: 1 0.1
A2.15Mime ... 146 30-1 registration |scheme identifier of Party/cac:PartyLegalEntity/cbc:CompanyID
A2IGICERE = 147 identifier the Seller legal /@schemelD
A2.17 CEFVA.. 147 identification | registration identifier.
A2.18 UN/EC... 147 scheme
A3 Internation... 148 identifier
BT-31| 2 [0.1|Seller VAT|The Seller's VAT| I |/Invoice/cac:AccountingSupplierParty/cac: 1 0.n [CAR-3 with
identifier identifier (also known Party/cac:PartyTaxScheme/cbc:CompanyID cac:TaxScheme/c
as Seller VAT be:ID = “VAT”

Sample of EN-16931 syntax mapping to UBL

In this syntax mapping sample, you see the elements from the semantic model
on the left, and how they map to UBL on the right. Note that where there is not
a 1:1 match, the EN also specifies what limited mismatches are allowed, and
how these should be treated, in part 3-1.

For example, the cardinality of sr-28, the Seller Trading Name, is 0..1 in EN-
16931, meaning that specifying the name of the seller is optional, and a seller
can have only one name. In UBL, the name is optional too, but the seller can
have multiple names. The final cardinality for the mapping is therefor 0..1, and
this means that a validation rule must be added to UBL to check that a seller’s
name is limited to the one element (mismatch type car-3).

2.5 Customization of EN-16931

The European Norm also provides a structured way to create more specific
variants, in the way of ‘Core Invoice Usage Specifications' (CIUSes) and
Extensions:

- A CIUS may add further restrictions on documents:
o may remove optional fields
o may make optional fields mandatory
o may introduce stricter business rules

11

o may choose subsets for code lists

o a CIUS may not expand code lists, add elements, make mandatory
elements optional, or make rules more lenient

An Extension can do all of that: add new elements, expand code lists,

increase cardinality, etc.

This means that any document that is compliant to a CIUS of the European
Norm is also compliant to the European Norm, whereas documents that are
compliant to the European Norm are not always compliant to a CIUS.

The extension mechanism is there for very specific sectors: it is a way to create a
standard that adds some things, while still being ‘mostly’ compatible to the EN,
without burdening other users of the EN with that highly specific data. Two
examples from the Netherlands are the Standard Energy E-Invoice (which adds
meter data for the energy sector in the netherlands), and the G-account
extension, which adds a second set of payment instruction, for a tax construct
that is very specific and almost exclusively used in the temporary employment
industry.

If at all possible, it's generally better to create a CIUS if you have specific
requirements.

Peppol BIS 3 is a CIUS of the European Norm. Therefore, all valid Peppol BIS 3
documents are compliant to EN-16931.

There are other CIUSes as well; CEF maintains a registry of of CIUSes and
Extensions at [EN-16931-CIUSes]

2.6 Peppol

Peppol (originally PEPPOL, an acronym for Pan-European Public Procurement
On-Line, though the acronym has been dropped, and the name is just Peppol
now) [PEPPOL], is actually three things in one:

1. The Peppol Interoperability framework, a set of legal agreements,
policies, requirements and specifications. of functional and non-
functional rules to which the participants agree, including:

2. The Peppol Network: the services and servers that perform the actual
exchange of business documents

3. Peppol BIS (Business Interoperability Specifications): a set of document
types for the exchange of business information; e-invoices, e-orders,
catalogues, etc.

12

http://peppol.eu/
https://ec.europa.eu/digital-building-blocks/sites/display/EINVCOMMUNITY/Registry+of+CIUS+(Core+Invoice+Usage+Specifications)+and+Extensions

‘Peppol’ as a name, is often used as a shorthand for all three of these things, so
depending on the context, Peppol may mean any of them.

To connect to the Peppol network, you either become a Peppol Service Provider,
or you sign a contract with one. Peppol Service Providers operate Peppol Access
Points, which are the servers that perform the actual exchange of documents.

Corner 1 Corner 4
Sender Receiver
%
Corner 2 Corner 3

The Peppol 4-corner model

Through a Peppol Access Point, any connected user can send documents to,
and receive documents from, any other connected user, regardless of who their
Peppol Service Provider is.

A Peppol Service Provider signs a contract with a national Peppol Authority (or
the central Peppol Coordinating Authority, if there is no national authority), to
join the agreement framework. This contract contains a number of legal and
operational requirements. For example, there are service level agreements
regarding the availability of access points, the service provider may not send
invalid documents on the network, and the service provider must check that a
participant is allowed to send a particular document (e.g. that they represent
the company they claim to represent).

There are also requirements to support specific document types. The Peppol
BIS documents are not the only types that are allowed, there are many more
(see [PEPPOL-DOCUMENT-TYPES] for a full list).

However, as per the agreement, if, as a participant, you support a specific
document class (such as e-invoices) of which there is a Peppol BIS equivalent,
you MUST also support the Peppol BIS version. So for instance, you are allowed
to use Xrechnung invoices, but if you do, you must also support Peppol BIS
invoices. This ensures the ‘connect once, reach anyone’ principle.

13

https://docs.peppol.eu/edelivery/codelists/v9.0/Peppol%20Code%20Lists%20-%20Document%20types%20v9.0.html

You are free to use the Peppol BIS format outside of the Peppol network as well,
but in that case neither you nor the party you exchange the document with are
bound by the other requirements from the Peppol Interoperability Framework.

The Peppol network provides a way to publish which document types (and
related business processes) a participant supports. See [[ON-SMP-ROLE]. The
Service Provider generally takes care of this publication.

N endpoint Corner 3

Corner 2

Where is SMP? SWhere is Access Point?
~

v A

SML SMP

Peppol Capability Lookup

14

https://ion-smp.net/documentation/about/role

3 Peppol BIS Invoices - how to read the
specification

3.1 Documentation overview

The Documentation page for Peppol BIS Invoices (and, actually, Credit Notes),
comprises several different parts [PEPPOL-BIS-3-BILLING]:

@ Peppol BIS Billing 3.0 - May 2024 Release — Mozilla Firefox AR
B | Peppol BIS Billing 3.0 - May 20 X | + v
« > C QO B hups://docs.peppol.euspoacc/billing/3.0/ g @)=

Peppol BIS Billing 3.0 - May 2024 Release

Home

- i
e Business Interoperability Specifications (BIS)

BIS compliance

Release notes
Syniax
Y UBL Invoice

UBL Credit Note
Please note that all element names are inhereted from EN16931 and naming use the term invoice, but this covers both invoice and credit notes. The
tag names are correct according to the UBL Credit note schema

Auks EN16931 model bound to UBL

Rules for Peppol BIS 3.0 Billing

Code lists

1SO 6523 ICD list

Electronic Address Scheme (EAS)

1SO 3166-1:Alpha2 Country codes

ISO 4217 Currency codes

Recommendation 20, including Recommendation 21 codes - prefixed with X (UN/ECE)

Duty or tax or fee category code (Subset of UNCL5305)

Item type identification code (UNCL7143)

Screenshot of documentation overview page

1. The main BIS specification, which describes the surrounding processes,
and business rules. This part also contains a number of examples for
specific sections of the invoice.

15

https://docs.peppol.eu/poacc/billing/3.0

. The syntax. This part contains the documentation of the actual mapping,
by listing all the allowed XML elements, their cardinality, their meaning,
and the validation rules that are relevant to those elements.

. The rules. This is a list of validation rules, containing the rule description,
and the actual schematron definition of the rule (e.g. how it's validated
when using schematron validtion)

. Code lists. A number of elements are restricted to a specific code list. This
part lists all the used code lists.

. Downloads. The downloads section contains the standard validation files
you can use (apart from the UBL XML Schema's, you'll need to procure
those from QOasis), and a number of example files.

The following sections contain more information about each of these.

16

3.2 Peppol BIS main specification

Table of Contents

Link to main site of documentation
Introduction to openPeppol and BIS

Document Structure

4.2. Invoice verification

4.6. Negative invoices and credit
notes

5. Invoice and credit note business
requirements

6. Semantic datatypes

9. Calculation

9.1. Calculation of totals

Formulas for the calculations of totals are as follows:

BT-110 Invoice total VAT amount

BT-112 Invoice total amount with VAT

scope
Audience . .
Business Term name Calculation
1. Benefits B
term id
2. Parties and roles
21, parties BT-106 Sum of invoice line net amounts 2 (BT-131: Invoice line net amount)
2.2. Roles
SELESSpEcsse BT-107 Sum of allowances on document Z (BT-92: Document level allowance amount)
3.1. General invoicing process level
4. Invoice functionality
4.1. Accounting BT-108 Sum of charges on document level Z (BT-99: Document level charge amount)

4.3. Auditing BT-109 Invoice total amount without VAT BT-106: Sum of invoice line net amounts
4.4, VAT Reporting — BT-107: Sum of allowances on document level
4.5. Payment + BT-108: Sum of charges on document level

Z (BT-117: VAT category tax amount)

BT-109: Invoice total amount without VAT
+ BT-110: Invoice total VAT amount

@ Peppol BIS Billing — Mozilla Firefox v oA X
B | Peppol BIs Billing x ~
EN S O B httpsi//docs.peppol.eu/poacc/billing/3.0/bis/# calculation B v L @ & =

6.1. Primitive types

6.2. Semantic data types BT-115
. Value added tax (VAT)

7.1. Line VAT Information

BT-112: Invoice total amount with VAT
— BT-113: Paid amount
+ BT-114: Rounding amount

Amount due for payment

~

7.2. Document level allowance or
charge

7.3. VAT Breakdown

7.4. Invoice total VAT amount

9.1.1. UBL syntax calculation formulas

The following elements show the legal monetary totals for an invoice or credit note

®

Rounding

w0

. Calculation

Element Formula

9.1. Calculation of totals

9.2. Calculation on line level <chc:LineExtensionAmount> Z (cac:InvoiceLine/cbe:LineExtensionAmount)
9.3. Calculation of allowance/charge
amount

9.4. Calculation of VAT

<chc:AllowanceTotalAmount> Z (cac: AllowanceCharge[Chargelndicator="false'l/cbc: Amount)

Screenshot of main documentation page

This is the main specification document for Peppol BIS Billing, i.e. for invoices
and credit notes. It specifies the data model, and which elements of EN-16931's
model are used for Peppol BIS. It describes the roles that it supports within
business processes, and the functionality of Peppol BIS within those processes.
It also defines the rules and restrictions for the data elements in the model.

3.3 Peppol BIS Billing syntax

The syntax documentation describes the XML elements that are used in the
(mandatory) UBL syntax mapping.

17

@ 7

< (6]

Peppol BIS Billing 3.0 - May 2024 Release | Structure — Moxzilla Firefox

5 | peppol BIS Billing 3.0- May 20 X | +

O B https://docs.peppol.eu/poacc/billing/3.0/syntax/ubl-invoicetree, 8w
Peppol BIS Billing 3.0 - May 2024 Release
Home ' UBL Invoice
Card Name Description
1.1 ubl:Invoice
1.1 « cbe:CustomizationlD Specification identifier
An of the the total set of rules regarding semantic content,

cardinalities and business rules to which the data contained in the instance document conforms.

Default value: urn:cen.eu:en16931:2817#compliant#urn: fdc:peppol.eu: 2017:poacc:billing:3.8

1.1 « cbe:ProfilelD Business process type

Identifies the business process context in which the transaction appears, to enable the Buyer to process

the invoice in an appropriate way.

Default value: urn: fdc:peppol.eu:2017:poacc:billing:@1:1.0

1.1 « cbedD Invoice number

A unique identification of the Invoice. The sequential number required in Article 226(2) of the directive
2006/112/EC [2], to uniquely identify the invoice within the business context, time-frame, operating

systems and records of the Seller. No identification scheme is fo be used.

Example value: 33445566

1.1 « chcilssueDate Invoice issue date

The date when the Invoice was issued. Format "YYYY-MM-DD"

Example value: 2017-11-81

0.1 « cbe:DueDate Payment due date

The date when the payment is due.Format "YYYY-MM-DD". In case the Amount due for payment
(BT-115) is positive, either the Payment due date (BT-9) or the Payment terms (BT-20) shall be present.

Example value: 2817-11-81

1.1 + chcinvoiceTypeCode Invoice type code
A code specifying the functional type of the Invoice.

Example value: 388

Screenshot of syntax documentation page

Elements on this page:

1. Cardinality: The cardinality (‘Card’ in the table) specifies how many times
the element may occur as a child of its parent element, see section 2.4

for more information on the notation of cardinality.

2. Level (e.g. is this element nested in the element of the previous level),

represented as a number of bullets before the name

3. Element name and namespace, using the conventional UBL namespace
prefixes of cbc and cac
4. Description of the element, its semantic meaning, and in some cases, an
example value.

Each element has its own page with a more detailed description:

18

@ Peppol BIS Billing 3.0 - May 2024 Release — Mozilla Firefox VoA

=

«

Peppol BIS Billing 3.0 - May 20 X | +
(&) QO B https://docs.peppol.eu/poace/billing/3.0/syntax/ubl-invoice/che-IssueDate, w

Peppol BIS Billing 3.0 - May 2024 Release

Home ' UBL Invoice ' ublinvoice ' cbc:lssueDate

cbc:lssueDate

The date when the Invoice was issued. Format "YYYY-MM-DD"

Cardinality 1

Namespace cbc UM:oasis:names:: 1:.ubl:schema:xsd:CommonBasicC 1ents-2

Data type Date

Example value 2817-11-01

Business terms BT-2

Rulkss Identifier/Error message Flag
BR-03 fatal

An Invoice shall have an Invoice issue date (BT-2)

PEPPOL-EN16931-F001 fatal
A date MUST be formatted YYYY-MM-DD

Screenshot of syntax detail page

This page has the following content:

Next to Home (a link to the start) and UBL Invoice (the document type of
the specification we're looking at) is a breadcrumb trail of the current
element; i.e. the elements name, preceded by the parent element(s) up to
the main element of this document (in this case ubl:Invoice).

The name of the element again

A description of the element

Cardinality: specifies how many times this element may occur within its
parent element, see section 2.4 for more information on the notation of
cardinality.

Namespace: the conventional namespace prefix (e.g. cac or cbc), followed
by the full XML namespace of this element

19

Data Type: The UBL Data Type of data of this element’s content, if this
element has direct content. If the element has only child elements, the
Type is ommitted. Example types are Text, Date, Amount, etc. UBL Data
types are defined in [UBL2.1-Data-Types].

Example Value: An example value for this element, if it is an element with
a value

Business Terms: The Business Term Identifier(s) this element relates to as
per the syntax mapping of the European Norm

Rules: all validation rules from the specification that are relevant for this
element.

3.4 Peppol BIS validation rules

The validation rules were already mentioned in the previous section, but are
presented as separate lists for reference. The Peppol documentation provides
two lists of validation rules: the rules from EN-16931, and the peppol-specific
rules. Since Peppol BIS is a CIUS of EN-16931, all Peppol documents must
adhere to the rules from the EN itself. Valid documents must comply to both
these rulesets.

Country-specific rules

The Peppol validation rules also contain a number of country-specific
rules. These rules have a name that starts with the ISO-3166 Alpha2
country code (e.g. DK, NL, etc). Such rules are determined by the
Peppol Authority for that country, but enforced for all validation.
Country-specific rules are always limited to the country of the seller,
and each country-specific rules must always start with ‘For suppliers in
XX, ...

20

http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html#A-DATA-TYPE-QUALIFICATIONS-IN-UBL

@ 7 Peppol BIS Billing 3.0 - May 2024 Release | Rules — Mozilla Firefox v oA X
B | Peppol BIS Billing 2.0 - May 20 X | +
<« (] QO @ hitpsi/docs peppol.ew/poacc/billing/3.0/rules/ubl-tc434 w5 L@ f =

Peppol BIS Billing 3.0 - May 2024 Release

Home / Rules / EN16931 model bound to UBL

EN16931 model bound to UBL

Identifier/Error message Flag

BR-01 fatal
An Invoice shall have a Specification identifier (BT-24)

BR-02 fatal
An Invoice shall have an Invoice number (BT-1)

BR-03 fatal
An Invoice shall have an Invoice issue date (BT-2)

BR-04 fatal
An Invoice shall have an Invoice type code (BT-3)

BR-05 fatal
An Invoice shall have an Invoice currency code (BT-5).

BR-06 fatal
An Invoice shall contain the Seller name (BT-27)

BR-07 fatal
An Invoice shall contain the Buyer name (BT-44).

BR-08 fatal
An Invoice shall contain the Seller postal address.

BR-09 fatal
The Seller postal address (BG-5) shall contain a Seller country code (BT-40).

BR-10 fatal
An Invoice shall contain the Buyer postal address (BG-8).

BR-11 fatal
The Buyer postal address shall contain a Buyer country code (BT-55).

BR-12 fatal

Screenshot of rule list page

The validation rules list pages show the following details for all rules:

- The identifier for the rule. There are a number of conventions used by the

rule identifiers to show the origin and scope of the rule:

o The initial prefix shows the origin of the rule:
= BR- for rules from EN-16931
= uBL- for rules that check for the absence of UBL elements that are

not defined for Peppol BIS

= peppoL- for rules that are Peppol-specific
= NL-, BE-, etc, for Peppol's country-specific rules

o The prefix may be followed by a denominator that indicated the type
of rule, e.g. codelist rules have a denominator -cr-, and rules
pertaining to specific tax categore have the tax category code here
(such as -s-, -ae-, etc).

o The last part of the rule is an integer to give the rule a unique
identifier.

21

A textual description of the rule. When using the standard validation files,

this is also the error that is generated when the document does not

conform to the rule.

The rule list also contains an indicator whether a violation of the rule is

fatal (i.e. the document is not compliant), or just a warning (the document

is wrong, but still valid).

Clicking on the rule identifier takes you to the rule details page:

@ 7 Peppol BIS Billing 3.0 - May 2024 Release | Rules | PEPPOL-EN16931-R046 — Mozilla Firefox

B | Peppol BIS Billing 3.0 -May 20 X | Peppol BIS Billing 3.0 - May 20 X +
& C O 8 https://docs.peppol.eu/poacc/billing/3.0/rules/ubl-peppol/PEPPOL-EN16931-R046/ w

Peppol BIS Billing 3.0 - May 2024 Release

Home ' Rules ' Rules for Peppol BIS 3.0 Biling ' PEPPOL-EN16931-R046

PEPPOL-EN16931-R046

Message Item net price MUST equal (Gross price - Allowance amount) when gross price is provided.
Context cac:Price/cac:AllowanceCharge

Test not(cbc:BaseAmount) or xs:decimal(../cbc:PriceAmount) = xs:decimal(cbc:BaseAmount) - xs:decimal(chc:Amount)

Usage ubl:Invoice / cac:InvoiceLine / cac:Price / cbe:PriceAmount

ubl:CreditNote / cac:CreditNoteLine / cac:Price f cbc:PriceAmount

Screenshot of rule details page

The

rule details page shows the following details:
The identifier of the rule.

The description of the rule. When using the standard validation files, this
is also the error that is generated when the document does not conform

to the rule.

The context of the rule. This relates to how the standard validation files

are implemented using the Schematron standard, and is represented as

22

an XSLT 2 Selector. The rule is applied to all XML elements that match this
selector.

- The XSLT Test that implements the rule. This relates to how the standard
validation files are implemented using the Schematron standard, and is
represented as an XLST 2 expression. The check fails if this expression,
when evaluated in specified Context, returns False.

- Usage: this shows the elements where from the Syntax section for which
this rule is relevant.

3.5 Peppol BIS code lists

@ Peppol BIS Billing 3.0 - May 2024 Release | Rules — Mozilla Firefox v A X
B Peppol BIS Billing 3.0 -May 20 X Peppol BIS Billing 3.0 -May 20 X | =+ N

(& QO B8 https://docs.peppol.eu/poacc/billing/3.0/codelist/UNCL446 E ¥y L ® @1 =

Peppol BIS Billing 3.0 - May 2024 Release

Home | Codelists ' Payment means code (UNCL4461)

Payment means code (UNCL4461)

Identifier UNCL4461

Agency UN/CEFACT

Version D.16B

Usage ! ubl:Invoice / cac:Paymenth s /¢l aymentMeansCode

1 ubl:CreditNote / cac:PaymentM; 'aymentMeansCode
Codes 1
Instrument not defined
Not defined legally enforceable agreement between two or more parties (expressing a contractual right or a right to the payment of money).

2
Automated clearing house credit
A credit transaction made through the automated clearing house system.

3
Automated clearing house debit
A debit transaction made through the automated clearing house system.

a
ACH demand debit reversal
A request to reverse an ACH debit transaction to a demand deposit account

5
ACH demand credit reversal
A request to reverse a credit transaction to a demand deposit account.

6
ACH demand credit
A credit transaction made through the ACH system to a demand deposit account.

7
ACH demand debit
A debit fransaction made through the ACH system to a demand deposit account.

Screenshot of code list page

There are a number of elements in Peppol documents, where the allowed
values are restricted to a specific code list. These lists are provided in full in this
section of the documentation. These code lists are often maintained by external
agencies (such as UN/CEFACT), but some of them are maintained by Peppol

23

itself. In some cases, the main code list is maintained by an external agency, but
Peppol only allows a specific subset of the full list.

The code list pages contain the following details:

The name of the Code list, and if based on a more general list, a reference
to the full list.

Identifier: The identifier of the code list, as it is used in documents when
the code list is referred to

Agency: The agency that maintains the code list

Version: The version of the code list

Usage: the elements from the syntax where this code list is used

Codes: The list of allowed codes, and their description.

24

4 Peppol BIS Example invoice

<?xml version="1.0" encoding="utf-8"?>
<Invoice
xmlns:cac="urn:oasis:names:specification:ubl:schema:xsd:CommonAggregateCo
mponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:xsd:CommonBasicCompon
ents-2"
xmlns="urn:oasis:names:specification:ubl:schema:xsd:Invoice-2">
<cbc:UBLVersionID>2.1</cbc:UBLVersionID>
<cbc:CustomizationID>urn:cen.eu:enl6931:2017#compliant#urn: fdc:peppol.eu:
2017:poacc:billing:3.0</cbc:CustomizationID>
<cbc:ProfileID>urn: fdc:peppol.eu:2017:poacc:billing:01:1.0</cbc:ProfilelID
>
<cbc:ID>INVOICE12345</cbc:ID>
<cbc:IssueDate>2025-01-09</cbc:IssueDate>
<cbc:DueDate>2025-02-08</cbc:DueDate>
<cbc:InvoiceTypeCode>380</cbc: InvoiceTypeCode>
<cbc:DocumentCurrencyCode>EUR</cbc:DocumentCurrencyCode>
<cac:0rderReference>
<cbc:ID>47806</cbc:ID>
</cac:0rderReference>
<cac:AccountingSupplierParty>
<cac:Party>
<cbc:EndpointID schemelID="0106">12345678</cbc:EndpointID>
<cac:PostalAddress>
<cbc:StreetName>Peppolstreet 1</cbc:StreetName>
<cbc:CityName>Businesstown</cbc:CityName>
<cbc:PostalZone>1111 ZZ</cbc:PostalZone>
<cac:Country>
<cbc:IdentificationCode>NL</cbc:IdentificationCode>
</cac:Country>
</cac:PostalAddress>
<cac:PartyTaxScheme>
<cbc:CompanyID>NL1111.11.111.B.01</cbc:CompanyID>
<cac:TaxScheme>
<cbc:ID>VAT</cbc:ID>
</cac:TaxScheme>
</cac:PartyTaxScheme>
<cac:PartyLegalEntity>
<cbc:RegistrationName>SimplerInvoicing</cbc:RegistrationName>
<cbc:CompanyID schemeID="0106">12345678</cbc:CompanyID>
</cac:PartyLegalEntity>
</cac:Party>
</cac:AccountingSupplierParty>
<cac:AccountingCustomerParty>
<cac:Party>
<cbc:EndpointID schemeID="9944">NL1234567890B01</cbc:EndpointID>
<cac:PostalAddress>
<cbc:StreetName>Teststreet 123</cbc:StreetName>
<cbc:CityName>Testcity</cbec:CityName>
<cbc:PostalZone>1111 AA</cbc:PostalZone>
<cac:Country>
<cbc:IdentificationCode>NL</cbc:IdentificationCode>
</cac:Country>
</cac:PostalAddress>

25

<cac:PartyLegalEntity>
<cbc:RegistrationName>Buyers Inc.</cbc:RegistrationName>
<cbc:CompanyID schemeID="0106">11111111</cbc:CompanyID>
</cac:PartyLegalEntity>
</cac:Party>
</cac:AccountingCustomerParty>
<cac:PaymentMeans>
<cbc:PaymentMeansCode>30</cbc: PaymentMeansCode>
<cbc:PaymentID>Deb. 10202 / Fact. 12115118</cbc:PaymentID>
<cac:PayeeFinancialAccount>
<cbc:ID>NL11 BANK 1111111111</cbc:ID>
</cac:PayeeFinancialAccount>
</cac:PaymentMeans>
<cac:TaxTotal>
<cbc:TaxAmount currencyID="EUR">42.00</cbc:TaxAmount>
<cac:TaxSubtotal>
<cbc:TaxableAmount currencyID="EUR">200.00</cbc:TaxableAmount>
<cbc:TaxAmount currencyID="EUR">42.00</cbc:TaxAmount>
<cac:TaxCategory>
<cbc:ID>S</cbc: ID>
<cbc:Percent>21</cbc:Percent>
<cac:TaxScheme>
<cbc:ID>VAT</cbc:ID>
</cac:TaxScheme>
</cac:TaxCategory>
</cac:TaxSubtotal>
</cac:TaxTotal>
<cac:LegalMonetaryTotal>
<cbc:LineExtensionAmount
currencyID="EUR">200.00</cbc:LineExtensionAmount>
<cbc:TaxExclusiveAmount
currencyID="EUR">200.00</cbc:TaxExclusiveAmount>
<cbc:TaxInclusiveAmount
currencyID="EUR">242.00</cbc:TaxInclusiveAmount>
<cbc:PayableAmount currencyID="EUR">242.00</cbc:PayableAmount>
</cac:LegalMonetaryTotal>
<cac:InvoicelLine>
<cbc:ID>1</cbc:ID>
<cbc:InvoicedQuantity unitCode="C62">1</cbc:InvoicedQuantity>
<cbc:LineExtensionAmount
currencyID="EUR">200.00</cbc:LineExtensionAmount>
<cac:Item>
<cbc:Name>0Office Supplies</cbc:Name>
<cac:ClassifiedTaxCategory>
<cbc:ID>S</cbc:ID>
<cbc:Percent>21</cbc:Percent>
<cac:TaxScheme>
<cbc:ID>VAT</cbc:ID>
</cac:TaxScheme>
</cac:ClassifiedTaxCategory>
</cac:Item>
<cac:Price>
<cbc:PriceAmount currencyID="EUR">200.00</cbc:PriceAmount>
</cac:Price>
</cac:InvoiceLine>
</Invoice>

26

5 Validating invoices

On of the requirements in the Peppol agreements is that it is not allowed to
send documents on the network that are not compliant to the validation rules
of the document type in question. This means that, for a Service Provider, or a
software package, to be compliant to the Peppol standards, it is wise to validate
every document before sending it to the network.

Peppol does not mandate how you validate your document, as long as whatever
you send is compliant to both the structure of the syntax and all validation rules
in the specification.

That said, Peppol does provide validation artefacts that everyone can use to
validate Peppol BIS documents, for the rules from EN-16931 as well as the
Peppol rules. These validation artefacts are published in the form of
Schematron files.

This section is a summary of an article we have written before, which
you can find here: [IONITE-VALIDATION]

5.1 XML Schema

The XML Schema that is used for Peppol BIS document is that of UBL 2.1 itself;
there are no official XML Schema definitions for just the elements used in
Peppol BIS (or EN-16931, for that matter).

XML Schema validation is generally pretty straightforward: Many XML libraries
offer this functionality, and it is often simply a matter of loading the XML
Schema (. xsaq) file and providing the document to validate, upon which the
validator returns an error or success response.

XML
Document

XML Schema

et Success/Error

XML Schema validation

27

https://ionite.net/news-articles/2023-08-17_validating_peppol_documents

Note that the UBL 2.1 XML Schemas are distributed as a file tree: there are
separate files for all the main UBL document types (such as Invoice, CreditNote,
and Order), and a number of shared files, which are included by the main
document files. You'll need to fetch the xsd files for the main document types
you want to validate from the maindoc/ directory, and get all the files from the
common/ directory, as these are included by the main document xsd files.

5.2 Schematron

For many validation rules in business documents, XML Schemas do not quite
suffice: often, these rules require some calculation or information about other
values, and go beyond the mere structure of the document. For instance, a rule
that the invoice total must equal the sum of the invoice lines (plus charges
minus allowances), cannot be expressed in an XML Schema.

Therefore, many official validation files use a different standard: Schematron.

Schematron is a rule-based validation language for making assertions
about the presence or absence of patterns in XML trees. It is a
structural schema language expressed in XML using a small number of
elements and XPath languages. In many implementations, the
Schematron XML is processed into XSLT code for deployment anywhere
that XSLT can be used.

Schematron is capable of expressing constraints in ways that other
XML schema languages like XML Schema and DTD cannot. For
example, it can require that the content of an element be controlled by
one of its siblings. Or it can request or require that the root element,
regardless of what element that is, must have specific attributes.
Schematron can also specify required relationships between multiple
XML files. Constraints and content rules may be associated with “plain-
English” (or any language) validation error messages, allowing
translation of numeric Schematron error codes into meaningful user
error messages.

Schematron validation is slightly more complicated than XML Schema
validation: Schematron definitions are generally not used directly (though some
implementations do support this), instead, they are transformed into XSLT
(eXtensible Stylesheet Language) files, which can be used by any XSLT
transformer to transform a given document into an SVRL (Schematron
Validation Report Language) document.

28

Simply said, this is a new XML document that contains a list of warnings and
errors, about the XML document. If the document adheres to all rules defined in
the Schematron file, these lists are empty. By checking for the presence or
absence of errors in the SVRL result file, you can check whether a given XML
document is valid or not.

TN

Schematron
definition

——

Schematron
converter
L S

Y

XSLT
file

S Y

\
XML XSLT SVRL SVRL .
Document transformer file Parser Success/Error

XML Schema validation

Full validation toolkits tend to provide something that can be used in a similar
way to XML Schema validation, e.g. you load the schematron or XSLT file,
provide the document to validate, and it will return a success or error response.

You can also use a standard XML toolkit which provides XSLT functionality, in
which case your program must interpret the resulting XML file yourself. Do note
that the schematron validation files for both EN-16931 and Peppol BIS require
that the XSLT transformator supports XSLT 2.

5.3 Steps to validate a Peppol BIS document

When validating documents yourself, using the official validation files, it is
important to keep in mind that the Schematron definitions act on the
presumption that XML Schema validation has already been performed; while
they have a number of existence/nonexistence checks themselves, many rules
assume that the overall structure of the document is already known to be valid.

Another thing to keep in mind is that the EN-16931 rules and the Peppol BIS
rules are distributed separately, in the case of Peppol BIS. You will need to check
both.

29

For validating Peppol BIS documents, this means that there are 3 individual
steps to perform:

1. Validate the structure itself, using the general UBL 2.1 XML Schema
definition [UBL-2.1-INVOICE]

2. Validate the EN-16931 rules, using the schematron file, or the XSLT file
derived from it [SCHEMATRON-VALIDATION-EN16931]

3. Validate the Peppol BIS rules, using the schematron file, or the XSLT file
derived from it [SCHEMATRON-VALIDATION-PEPPOLBIS]

5.4 Steps to validate other documents

As mentioned, there are many other document types allowed on the Peppol
network as well. Some of these are based on UBL or CII as well, while others use
a completely different structure. Similarly, for some of these, there are
schematron files, while for others, there are not.

Peppol does not publish the specification, nor any available validation files for
document types that are not issues by Peppol. You will have to find the
requirements, and any official validation files, at the organization that maintains
the document type standard.

5.5 Online validators

There are several tools online that can help you validate documents. These are
not intended to provide production-level service, but can be of use when
developing a specific document type and you want to find out whether your
output is correct.

The NPA Peppol Test Tool [NPA-PEPPOL-TESTTOOL]
Peppol Practical - Document Validation [PEPPOL-PRACTICAL-VALIDATOR]:

There are a number of companies that do provide production-level validation,
but these generally require a contract. Search for ‘Validate Peppol Documents’
and you will get several relevant results.

5.6 Validation libraries
If you want to integrate document validation in your own solution, but do not

want to build it completely, the following libraries might help:

ion-docval [[ON-DOCVAL]
PHIVE [PHIVE-VALIDATOR]

Both libraries are open source.

30

https://github.com/phax/phive
https://ion-docval.ionite.net/
https://peppol.helger.com/public/locale-en_US/menuitem-validation
https://test.peppolautoriteit.nl/validate
https://docs.peppol.eu/poacc/billing/3.0/files/PEPPOL-EN16931-UBL.sch
https://docs.peppol.eu/poacc/billing/3.0/files/CEN-EN16931-UBL.sch
https://docs.oasis-open.org/ubl/UBL-2.1.html#T-INVOICE

6 How to get started on an implementation

If you have an existing system that manages invoice data, and wish to create
(valid) Peppol BIS invoices, the most comprehensive approach would be to
thoroughly read all the relevant specifications, starting with UBL and the
European Norm, then map your internal data structures on the existing syntax
mapping, and check that mapping against the requirements, check the
implementation against all rules, and identify and fill in any implementation

gaps.

That might, however, be more of a long-term approach. In order to get some
faster results, a more gradual approach may be more practical.

First of all, find some examples of Peppol BIS documents. Ideally, some
examples of valid and invalid documents, although given the rules, it should be
relatively easy to create an invalid document based on a valid one. Peppol
provides a ZIP file with some examples [PEPPOL-EXAMPLE-FILES].

Then, make sure you have a way to validate any file that your software creates,
as described in section 5. When testing your validator, make sure to test it
correctly identifies non-compliant documents.

At this point, it is wise to make sure you at least have access to the relevant
standards and skim through them, so that when specific questions regarding
the requirements do arise, you'll know where to find them.

Then you can start on creating documents yourself; given the examples, see
which data from your software system is required for the most minimal Peppol
BIS document, and run the output against the validator. Depending on the
existing serialization options your software presumably already supports, this
could be a full-fledged XML factory, but there’s nothing wrong with template-
based system either.

Validate your output, and the most important variants;

are all required elements always present?
might codelist-based elements receive values outside of the code list?
Think of currencies, countries, ISO6523 ICD schemes [ISO-6523], etc.

Ideally, there should be automated testing of the full ranges of options, but this
may not always be practical. It is, however, wise to put validation in the main
process of creation, to make sure the system fails early when invalid output
would be produced.

31

http://iso6523.info/
https://docs.peppol.eu/poacc/billing/3.0/files/BIS-Billing3-Examples.zip

At this point your system should be able to produce valid basic Peppol BIS
invoices. Now you can start adding additional features and data elements your
system supports, by adding them as optional values to the factory or
template(s). With each addition, make sure the range of possible vlaues is
tested for validity.

When in doubt, refer to the syntax and rules documentation as mentioned in
sections 3.3 and 3.4, or the main documentation of Peppol BIS and EN-16931
itself [PEPPOL-BIS-3-BILLING] [EN-16931].

32

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Obtaining+a+copy+of+the+European+standard+on+eInvoicing
https://docs.peppol.eu/poacc/billing/3.0

7 References

[UBL]: Universal Business Language
https://groups.oasis-open.org/communities/tc-community-home2?
CommunityKey=556949c8-dac8-40e6-bb16-018dc7ce54d6

[CII]: Cross-Industry Invoice https://unece.org/trade/uncefact/e-invoice

[UBL2.1]: Universal Business Language version 2.1
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html

[ION-SMP-ROLE]: The Role of an SMP
https://ion-smp.net/documentation/about/role

[EN-16931]: European Norm EN-16931 https://ec.europa.eu/digital-building-
blocks/sites/display/DIGITAL/
Obtaining+a+copy+of+the+European+standard+on+elnvoicing

[EN-16931-CIUSes]: Full list of CIUSes and Extensions of EN-16931
https://ec.europa.eu/digital-building-blocks/sites/display/EINVCOMMUNITY/
Registry+of+CIUS+%28Core+Invoice+Usage+Specifications%29+and+Extensions

[PEPPOL]: Peppol http://peppol.eu

[PEPPOL-BIS-3-BILLING]: Peppol BIS 3 Billing - Documentation
https://docs.peppol.eu/poacc/billing/3.0

[PEPPOL-DOCUMENT-TYPES]: Peppol Code Lists - Document Types
https://docs.peppol.eu/edelivery/codelists/v9.0/Peppol%20Code%20Lists%20-
%20Document%20types%20v9.0.html

[UBL-2.1-INVOICE]: UBL 2.1 Invoice schema files
https://docs.oasis-open.org/ubl/UBL-2.1.htmI#T-INVOICE

[DATYPIC-UBL2.1-INVOICE] Description of UBL 2.1 Invoice Elements
http://www.datypic.com/sc/ubl21/e-ns39_Invoice.html

[UBL2.1-DATA-TYPES]: UBL (2.1) Data Types http://docs.oasis-open.org/ubl/os-
UBL-2.1/UBL-2.1.htmI#A-DATA-TYPE-QUALIFICATIONS-IN-UBL

[IONITE-VALIDATION]: Validating Peppol Documents https://ionite.net/news-
articles/2023-08-17_validating_peppol_documents

[SCHEMATRON-VALIDATION-EN16931]: Schematron file for EN-16931
https://docs.peppol.eu/poacc/billing/3.0/files/CEN-EN16931-UBL.sch

33

https://docs.peppol.eu/poacc/billing/3.0/files/CEN-EN16931-UBL.sch
https://ionite.net/news-articles/2023-08-17_validating_peppol_documents
https://ionite.net/news-articles/2023-08-17_validating_peppol_documents
http://www.datypic.com/sc/ubl21/e-ns39_Invoice.html
https://docs.oasis-open.org/ubl/UBL-2.1.html#T-INVOICE
https://docs.peppol.eu/edelivery/codelists/v9.0/Peppol%20Code%20Lists%20-%20Document%20types%20v9.0.html
https://docs.peppol.eu/edelivery/codelists/v9.0/Peppol%20Code%20Lists%20-%20Document%20types%20v9.0.html
https://docs.peppol.eu/poacc/billing/3.0
http://peppol.eu/
https://ec.europa.eu/digital-building-blocks/sites/display/EINVCOMMUNITY/Registry+of+CIUS+(Core+Invoice+Usage+Specifications)+and+Extensions
https://ec.europa.eu/digital-building-blocks/sites/display/EINVCOMMUNITY/Registry+of+CIUS+(Core+Invoice+Usage+Specifications)+and+Extensions
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Obtaining+a+copy+of+the+European+standard+on+eInvoicing
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Obtaining+a+copy+of+the+European+standard+on+eInvoicing
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Obtaining+a+copy+of+the+European+standard+on+eInvoicing
https://ion-smp.net/documentation/about/role
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.html
https://unece.org/trade/uncefact/e-invoice
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=556949c8-dac8-40e6-bb16-018dc7ce54d6
https://groups.oasis-open.org/communities/tc-community-home2?CommunityKey=556949c8-dac8-40e6-bb16-018dc7ce54d6

[SCHEMATRON-VALIDATION-PEPPOLBIS]: Schematron file for Peppol BIS Billing

https://docs.peppol.eu/poacc/billing/3.0/files/PEPPOL-EN16931-UBL.sch

[NPA-PEPPOL-TESTTOOL]: NPA Peppol Test Tool - Validator
https://test.peppolautoriteit.nl/validate

[PEPPOL-PRACTICAL-VALIDATOR]: Peppol Practical - Document Validation
https://peppol.helger.com/public/locale-en_US/menuitem-validation

[ION-DOCVAL]: ion-docval validation toolkit https://ion-docval.ionite.net

[PHIVE-VALIDATOR]: PHIVE - Integrative Validation Engine
https://github.com/phax/phive

[PEPPOL-EXAMPLE-FILES]: https://docs.peppol.eu/poacc/billing/3.0/files/BIS-
Billing3-Examples.zip

[[SO-6523]: ISO 6523 ICD Scheme list http://iso6523.info

34

http://iso6523.info/
https://github.com/phax/phive
https://ion-docval.ionite.net/
https://peppol.helger.com/public/locale-en_US/menuitem-validation
https://test.peppolautoriteit.nl/validate
https://docs.peppol.eu/poacc/billing/3.0/files/PEPPOL-EN16931-UBL.sch

	1 Introduction
	2 A (brief) history of structured business document types
	2.1 UBL
	2.2 The problem with UBL
	2.3 European Norm EN-16931
	2.4 Semantic models and syntax mappings
	2.4.1 Semantic models
	2.4.2 Cardinality
	2.4.3 Syntax mappings

	2.5 Customization of EN-16931
	2.6 Peppol

	3 Peppol BIS Invoices - how to read the specification
	3.1 Documentation overview
	3.2 Peppol BIS main specification
	3.3 Peppol BIS Billing syntax
	3.4 Peppol BIS validation rules
	3.5 Peppol BIS code lists

	4 Peppol BIS Example invoice
	5 Validating invoices
	5.1 XML Schema
	5.2 Schematron
	5.3 Steps to validate a Peppol BIS document
	5.4 Steps to validate other documents
	5.5 Online validators
	5.6 Validation libraries

	6 How to get started on an implementation
	7 References

